

AP Chemistry builds students' understanding of the nature and reactivity of matter. After studying chemical reactions and electrochemistry, students move on to understand how the chemical and physical properties of materials can be explained by the structure and arrangements of the molecules and the forces between those molecules. Students will examine the laws of thermodynamics, molecular collisions, and the reorganization of matter in order to understand how changes in matter take place. Finally, students will explore chemical equilibria, including acid-base equilibria. The equivalent of an introductory college-level chemistry course, AP Chemistry prepares students for the AP exam and for further study in science, health sciences, or engineering.

The AP Chemistry course provides a learning experience focused on allowing students to develop their critical thinking skills and cognitive strategies. Frequent no- and low-stakes assessments allow students to measure their comprehension and improve their performance as they progress through each activity. Students regularly engage with primary source materials, allowing them to practice the critical reading and analysis skills that they will need in order to pass the AP exam and succeed in a college chemistry course. Students perform hands-on labs that give them insight into the nature of science and help them understand chemical concepts, as well as how evidence can be obtained to support those concepts. Students also complete several virtual lab studies in which they form hypotheses; collect, analyze, and manipulate data; and report their findings and conclusions. During both virtual and traditional lab investigations and research opportunities, students summarize their findings and analyze others' findings in summaries, using statistical and mathematical calculations when appropriate. Summative tests are offered at the end of each unit as well as at the end of each semester, and contain objective and constructed response items. Robust scaffolding, rigorous instruction, relevant material, and regular active learning opportunities ensure that students can achieve mastery of the skills necessary to excel on the AP exam.

This course has been authorized by the College Board® to use the AP designation.

\*Advanced Placement® and AP® are registered trademarks and/or owned by the College Board, which was not involved in the production of, and does not endorse this product.

Length: Two semesters

# **UNIT 1: CHEMISTRY FOUNDATIONS**

# LESSON 1: CHEMICAL REACTIONS AND THE MOLE

## Read: Chemical Reactions and the Mole

Read about how changes in matter are represented by chemical equations.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: Chemical Reactions and the Mole

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Qualitative and Quantitative Analysis of Chemical Equations

Learn how to describe the changes that rearrange atoms and form the diversity of matter.

Duration: 1 hr Scoring: 0 points

## Quiz: Qualitative and Quantitative Analysis of Chemical Equations

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

#### Study: Mass Data Analysis

Use chemical analysis to identify substances.

Duration: 1 hr Scoring: 0 points

Quiz: Mass Data Analysis

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Chemical Reactions and the Mole**

Express the law of conservation of mass quantitatively and qualitatively by using symbolic representations and particulate drawings.

Duration: 1 hr Scoring: 25 points

## Lab: Gravimetric Analysis

Interpret data from an experiment that uses gravimetric analysis to determine the concentration of an analyte in a solution.

Duration: 2 hrs 45 mins Scoring: 50 points

### Discuss: Gravimetric Analysis

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

### **LESSON 2: STOICHIOMETRY**

### **Read: Stoichiometry**

Read about how the conservation of atoms makes it possible to identify stoichiometric relationships in a chemical reaction.

Duration: 3 hrs 30 mins Scoring: 0 points

## **Quiz: Stoichiometry**

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## **Study: Stoichiometry Calculations**

Relate quantities to identify stoichiometric relationships for a reaction, including situations involving limiting reactants and situations in which the reaction has not gone to completion.

Duration: 1 hr Scoring: 0 points

## **Quiz: Stoichiometry Calculations**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## **Study: Analyzing Chemical Reactions**

Compare quantities to identify stoichiometric relationships for a reaction, including situations involving limiting reactants.

Duration: 1 hr Scoring: 0 points

### **Quiz: Analyzing Chemical Reactions**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

#### Practice: Stoichiometry

Compare moles and measured masses of substances to identify stoichiometric relationships for a reaction, including situations involving limiting reactants and situations in which the reaction has not gone to completion

Duration: 1 hr Scoring: 25 points

#### Lab: Mole Ratios

Design a plan to collect data on the synthesis or decomposition of a compound, in order to confirm the conservation of matter and the law of definite proportions.

Duration: 2 hrs 45 mins Scoring: 50 points

### Discuss: Mole Ratios

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## **Explore: Isotopes and Mass Spectrometry**

Analyze, evaluate, and critique scientific explanations by examining scientific evidence

Duration: 1 hr 30 mins Scoring: 25 points

#### **LESSON 3: CHEMISTRY FOUNDATIONS WRAP-UP**

## Test (CS): Chemistry Foundations Wrap-Up

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

### Test (TS): Chemistry Foundations Wrap-Up

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## **UNIT 2: CHEMICAL REACTIONS AND ELECTROCHEMISTRY**

### **LESSON 1: CHEMIST RY REACTIONS**

#### **Read: Chemical Reactions**

Read about the changes matter undergoes during chemical reactions.

Duration: 3 hrs 30 mins Scoring: 0 points

### **Quiz: Chemical Reactions**

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

# Study: Types of Chemical Reactions and Solution Stoichiometry

Translate an observed chemical change into a balanced chemical equation, and justify your choice of equation type (molecular, ionic, or net ionic).

Duration: 1 hr Scoring: 0 points

## Quiz: Types of Chemical Reactions and Solution Stoichiometry

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### Study: Metals in Aqueous Solutions

Translate observed chemical changes involving metals in aqueous solution into balanced chemical equations.

Duration: 1 hr Scoring: 0 points

#### Quiz: Metals in Aqueous Solutions

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Chemical Reactions**

Identify redox reactions and explain your identification in terms of electron transfer.

Duration: 1 hr Scoring: 25 points

## Lab: Redox Titration

Perform a redox titration to determine the concentration of a solution.

Duration: 2 hrs 45 mins Scoring: 50 points

## **Discuss: Redox Titration**

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## **LESSON 2: ELECT ROCHEMIST RY**

## Read: Electrochemistry

Read about how electrochemistry shows the interconversion between chemical and electrical energy in galvanic and electrolytic cells.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: Electrochemistry

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

### Study: Evidence of a Chemical Reaction

Evaluate the classification of a process as a physical change, a chemical change, or an ambiguous change, based on macroscopic observation.

Duration: 1 hr Scoring: 0 points

### Quiz: Evidence of a Chemical Reaction

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Study: Electrochemistry and Technology

Use concepts of electrochemistry to identify the underlying problems that are preventing a battery from working properly.

Duration: 1 hr Scoring: 0 points

### Quiz: Electrochemistry and Technology

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### Practice: Electrochemistry

Analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.

Duration: 1 hr Scoring: 25 points

### Lab: Electrochemistry: Galvanic Cells

Analyze data regarding galvanic or electrolytic cells to identify properties of the underlying redox reactions.

Duration: 2 hrs 45 mins Scoring: 50 points

## **Explore: Redox Reactions and the Body**

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

Duration: 1 hr 30 mins Scoring: 25 points

## Discuss: Electrochemistry: Galvanic Cells

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## LESSON 3: CHEMICAL REACTIONS AND ELECTROCHEMISTRY WRAP-UP

### Test (CS): Chemical Reactions and Electrochemistry

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

### Test (TS): Chemical Reactions and Electrochemistry

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

### **UNIT 3: THERMODYNAMICS**

## **LESSON 1: ENERGY CHANGES IN MATTER**

### Read: Energy Changes in Matter

Read about the energy changes that take place during physical and chemical processes.

Duration: 3 hrs 30 mins Scoring: 0 points

### Quiz: Energy Changes in Matter

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

### Study: Maxwell-Boltzmann Distribution

Generate explanations or make predictions about the transfer of thermal energy between systems that occurs due to kinetic energy from molecular collisions.

Duration: 1 hr Scoring: 0 points

## Quiz: Maxwell-Boltzmann Distribution

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### Study: Calculating Energy Changes in Chemical and Physical Processes

Use the law of conservation of energy to compare the magnitudes of energy changes occurring in different systems as well as to identify the systems, the types of energy changes, and the directions of energy flow.

Duration: 1 hr Scoring: 0 points

### Quiz: Calculating Energy Changes in Chemical and Physical Processes

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Energy Changes in Matter**

Use the law of conservation of energy to compare the magnitudes of energy changes occurring in different systems, as well as to identify the systems, the types of energy changes, and the directions of energy flow.

Duration: 1 hr Scoring: 25 points

#### Lab: Enthalpy of Fusion of Ice

Design and interpret the results of an experiment in which calorimetry is used to determine the change in enthalpy of a chemical process at constant pressure.

Duration: 2 hrs 45 mins Scoring: 50 points

### Lab: Enthalpy of Reaction

Design and interpret the results of an experiment in which calorimetry is used to determine the change in enthalpy of a chemical process at constant pressure.

Duration: 2 hrs 45 mins Scoring: 50 points

## Discuss: Enthalpy of Fusion of Ice

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## Discuss: Enthalpy of Reaction

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

# **LESSON 2: THERMODYNAMICS**

### Read: Thermodynamics

Read about how the laws of thermodynamics describe the essential role of energy and explain and predict the direction of changes in matter.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: Thermodynamics

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Understanding Thermodynamics

Determine whether a chemical or physical process is thermodynamically favorable by calculating the change in standard Gibbs free energy.

Duration: 1 hr Scoring: 0 points

## **Quiz: Understanding Thermodynamics**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Study: Applying Principles of Thermodynamics

Use tables of standard enthalpies of formation to calculate the standard enthalpy of reactions involving the extraction of elemental metals from metal oxides.

Duration: 1 hr Scoring: 0 points

### **Quiz: Sources of Energy**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Thermodynamics**

Determine whether a chemical or physical process is thermodynamically favorable by calculating the change in standard Gibbs free energy.

Duration: 1 hr Scoring: 25 points

## Explore: Endothermic and Exothermic Processes in Nature

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

Duration: 1 hr 30 mins Scoring: 25 points

### **LESSON 3: THERMODYNAMICS WRAP-UP**

## Test (CS): Thermodynamics

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## Test (TS): Thermodynamics Wrap-up

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## **UNIT 4: ATOMIC STRUCTURE AND BONDING**

### LESSON 1: ATOMIC STRUCTURE AND PERIODICITY

## **Read: Atomic Structure and Periodicity**

Read about the relationship between atomic structure and periodicity.

Duration: 3 hrs 30 mins Scoring: 0 points

## **Quiz: Atomic Structure and Periodicity**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

### Study: The Structure of the Atom

Analyze data relating to electron energies for patterns and relationships.

Duration: 1 hr Scoring: 0 points

### Quiz: The Structure of the Atom

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

#### Study: Atomic Models

Given information about a particular model of the atom, determine if the model is consistent with specified evidence.

Duration: 1 hr Scoring: 0 points

### **Quiz: Atomic Models**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Atomic Structure and Periodicity**

Predict and justify trends in atomic properties based on location on the periodic table and the shell model.

Duration: 1 hr Scoring: 25 points

### Lab: Spectroscopy

Justify the selection of a particular type of spectroscopy to measure properties associated with vibrational or electronic motions of molecules. Interpret the results of an experiment regarding the absorption of light to determine the concentration of an absorbing species in a solution.

Duration: 2 hrs 45 mins Scoring: 50 points

## **Discuss: Spectroscopy**

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## Explore: Materials and the Periodicity of Elements

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

Duration: 1 hr 30 mins Scoring: 25 points

### **LESSON 2: BONDING**

### **Read: Bonding**

Read about the forces of attraction that hold atoms together.

Duration: 3 hrs 30 mins Scoring: 0 points

## **Quiz: Bonding**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

### Study: Models of Bonding

Predict the type of bonding present between two atoms in a binary compound, based on location in the periodic table and the electronegativity of the elements.

Duration: 1 hr Scoring: 0 points

## Quiz: Models of Bonding

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Study: Examining the Composition of Materials

Analyze data relating to electron energies in order to identify patterns and relationships.

Duration: 1 hr Scoring: 0 points

### Quiz: Examining the Composition of Materials

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Bonding**

Use Lewis diagrams and VSEPR to predict the geometry of molecules, identify hybridization, and make predictions about polarity.

Duration: 1 hr Scoring: 25 points

### Lab: Types of Compounds

Design a plan to collect and interpret data needed to deduce the type of bonding in a sample of a solid.

Duration: 2 hrs 45 mins Scoring: 50 points

#### **Discuss: Types of Compounds**

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## LESSON 3: ATOMIC STRUCTURE AND BONDING WRAP-UP

## Test (CS): Atomic Structures and Bonding

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## Test (TS): Atomic Structures and Bonding

Take a teacher-scored test to assess what you have learned in this unit.

#### **UNIT 5: SEMESTER 1 EXAM**

### **LESSON 1: SEMESTER 1 EXAM**

#### Exam: Semester 1 Exam

Take a computer-scored exam to demonstrate your mastery of concepts and skills covered this semester.

Duration: 1 hr Scoring: 100 points

#### Final Exam: Semester 1 Exam

Take a teacher-scored exam to demonstrate your mastery of concepts and skills covered this semester.

Duration: 1 hr Scoring: 100 points

#### **UNIT 6: INTERMOLECULAR FORCES**

## LESSON 1: INTERMOLECULAR FORCES AND THE PROPERTIES OF SOLIDS AND LIQUIDS

## Read: Intermolecular Forces and the Properties of Solids and Liquids

Read about how the properties of solids and liquids are the result of intermolecular forces.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: Intermolecular Forces and the Properties of Solids and Liquids

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Intramolecular Forces versus Intermolecular Forces

Evaluate the classification of a process as a physical change, chemical change, or ambiguous change, based on the distinction between rearrangements of covalent interactions and noncovalent interactions.

Duration: 1 hr Scoring: 0 points

### Quiz: Intramolecular Forces versus Intermolecular Forces

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## **Study: Solubility of Ionic Compounds**

Create and interpret representations that link the concept of molarity with particle views of solutions.

Duration: 1 hr Scoring: 0 points

## **Quiz: Solubility of Ionic Compounds**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Practice: Intermolecular Forces and the Properties of Solids and Liquids

Predict properties of substances based on their chemical formulas, and provide explanations of their properties based on particle views.

Duration: 1 hr Scoring: 25 points

## Lab: Paper Chromatography

Design and interpret the results of a separation experiment (filtration, paper chromatography, column chromatography, or distillation) in terms of the relative strengths of interactions among the components.

Duration: 2 hrs 45 mins Scoring: 50 points

## Explore: Intermolecular Forces and the Properties of Biological Molecules

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

Duration: 1 hr 30 mins Scoring: 25 points

# **Discuss: Paper Chromatography**

Discussion, Chromatography

Duration: 1 hr Scoring: 15 points

### LESSON 2: INTERMOLECULAR FORCES AND THE PROPERTIES OF GASES

## Read: Intermolecular Forces and the Properties of Gases

Read about how the properties of gases are the result of intermolecular forces.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: Intermolecular Forces and the Properties of Gases

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Solving Equations Involving Gases

Apply mathematical relationships or estimation to determine macroscopic variables for ideal gases.

Duration: 1 hr Scoring: 0 points

## Quiz: Solving Equations Involving Gases

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### Study: Gas Behavior

Use the law of conservation of energy to compare the magnitudes of the energy changes occurring in two or more interacting systems.

Duration: 1 hr Scoring: 0 points

## Quiz: Gas Behavior

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Practice: Intermolecular Forces and the Properties of Gases

Refine multiple representations of a sample of matter in the gas phase to accurately portray the effects of changes in their macroscopic properties.

Duration: 1 hr Scoring: 25 points

## **Lab: Types of Chemical Reactions**

Evaluate the classification of a process as a physical change, chemical change, or ambiguous change, based on both macroscopic observations and the distinction between rearrangements of covalent interactions and noncovalent interactions.

Duration: 2 hrs 45 mins Scoring: 50 points

# **Discuss: Types of Chemical Reactions**

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

### **LESSON 3: INTERMOLECULAR FORCES WRAP-UP**

### Test (CS): Intermolecular Forces Wrap-Up

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

# Test (TS): Intermolecular Forces Wrap-Up

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## **UNIT 7: KINETICS**

# **LESSON 1: REACTION RATES**

### **Read: Reaction Rates**

Read about the rate law and its dependence on reactant concentration.

Duration: 3 hrs 30 mins Scoring: 0 points

## **Quiz: Reaction Rates**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Rate Laws

Use representations of the energy profile for an elementary reaction to make qualitative predictions regarding the relative temperature dependence of the reaction rate.

Duration: 1 hr Scoring: 0 points

### **Quiz: Rate Laws**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## **Study: Reactions and Collisions**

Analyze concentration-versus-time data to determine the rate law for a zeroth-, first-, or second-order reaction.

Duration: 1 hr Scoring: 0 points

## **Quiz: Reactions and Collisions**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### **Practice: Reaction Rates**

Connect the half-life of a reaction to the rate constant of a first-order reaction, and justify this connection.

Duration: 1 hr Scoring: 25 points

## Lab: The Effects of Temperature and Particle Size

Design and interpret the results of an experiment regarding the factors (i.e., temperature, concentration, surface area) that may influence the rate of a reaction.

Duration: 2 hrs 45 mins Scoring: 50 points

### Discuss: The Effects of Temperature and Particle Size

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

#### **LESSON 2: REACTION MECHANISMS AND CATALYSIS**

## Read: Reaction Mechanisms and Catalysis

Read about how rates of chemical reactions are determined by details of the molecular collisions.

Duration: 3 hrs 30 mins Scoring: 0 points

### Quiz: Reaction Mechanisms and Catalysis

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

### Study: Reaction Rates and Mechanisms

Translate among reaction energy profile representations, particulate representations, and symbolic representations (chemical equations) of a chemical reaction occurring in the presence and absence of a catalyst.

Duration: 1 hr Scoring: 0 points

### **Quiz: Reaction Rates and Mechanisms**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

#### **Study: Reaction Kinetics**

Explain the role of enzymes in biochemical reactions.

Duration: 1 hr Scoring: 0 points

### **Quiz: Reaction Kinetics**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### Practice: Reaction Mechanisms and Catalysis

Explain changes in reaction rates arising from the use of acid-base catalysts, surface catalysts, or enzyme catalysts, including selecting appropriate mechanisms with or without the catalyst present.

### Lab: Analyzing Concentration-versus-Time Data

Analyze concentration-versus-time data to determine the rate law for a zeroth-, first-, or second-order reaction. Duration: 2 hrs 45 mins Scoring: 50 points

## **Explore: Enzymes as Biological Catalysts**

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

Duration: 1 hr 30 mins Scoring: 25 points

## **LESSON 3: KINETICS WRAP-UP**

## Test (CS): Kinetics Wrap-Up

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## Test (TS): Kinetics Wrap-Up

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## **UNIT 8: CHEMICAL EQUILIBRIUM**

## **LESSON 1: GENERAL EQUILIBRIUM**

### Read: General Equilibrium

Read about the details of reactions in equilibrium.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: General Equilibrium

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Systems at Equilibrium

Given a set of experimental observations regarding physical, chemical, biological, or environmental processes that are reversible, construct an explanation that connects the observations to the reversibility of the underlying chemical reactions or processes.

Duration: 1 hr Scoring: 0 points

## Quiz: Systems at Equilibrium

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Study: Solving Equilibrium Problems

Given a manipulation of a chemical reaction or set of reactions (e.g., reversal of reaction or addition of two reactions), determine the effects of that manipulation on Q or K.

Duration: 1 hr Scoring: 0 points

## **Quiz: Solving Equilibrium Problems**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## **Practice: General Equilibrium**

Use Le Chatelier's principle to make qualitative predictions for systems in which coupled reactions that share a common intermediate drive the formation of a product.

Duration: 1 hr Scoring: 25 points

#### Lab: Reversible Reactions

Use Le Chatelier's principle to design a set of conditions that will optimize a desired outcome, such as product yield. Duration: 2 hrs 45 mins Scoring: 50 points

## **Explore: Reversible Reactions in Nature**

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

## **LESSON 2: SOLUBILITY EQUILIBRIUM**

### Read: Solubility Equilibrium

Read about the role of chemical equilibrium in the solubility of compounds in aqueous solutions.

Duration: 3 hrs 30 mins Scoring: 0 points

### **Quiz: Solubility Equilibrium**

Take a guiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## Study: Salts and Solubility

Characterize changes in matter using visual clues, and then create representations or written descriptions.

Duration: 1 hr Scoring: 0 points

### Quiz: Salts and Solubility

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Study: Principles of Equilibrium

Interpret data regarding the relative solubility of salts in terms of factors (e.g., common ions, pH) that influence the solubility.

Duration: 1 hr Scoring: 0 points

## Quiz: Principles of Equilibrium

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

#### Practice: Solubility Equilibrium

Predict the solubility of a salt, or rank the solubility of salts, given the relevant Ksp values.

Duration: 1 hr Scoring: 25 points

### Lab: Solubility Equilibrium

Analyze the enthalpic and entropic changes associated with the dissolution of a salt, using particulate level interactions and representations.

Duration: 2 hrs 45 mins Scoring: 50 points

#### Discuss: Solubility Equilibrium

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

### **LESSON 3: CHEMICAL EQUILIBRIUM WRAP-UP**

### Test (CS): Chemical Equilibrium

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## Test (TS): Chemical Equilibrium

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## **UNIT 9: ACID-BASE EQUILIBRIA**

### **LESSON 1: ACID-BASE EQUILIBRIA**

### Read: Acid-Base Equilibria

Read about the role of equilibrium in acid-base chemistry.

Duration: 3 hrs 30 mins Scoring: 0 points

## Quiz: Acid-Base Equilibria

Take a guiz to assess your understanding of the material.

## Study: Solving Acid-Base Equilibrium Problems

Identify a given solution as being the solution of a monoprotic weak acid or base (including salts in which one ion is a weak acid or base), calculate the pH and concentration of all species in the solution, and infer the relative strengths of the weak acids or bases from given equilibrium concentrations.

Duration: 1 hr Scoring: 0 points

## Quiz: Solving Acid-Base Equilibrium Problems

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

## Study: Acids and the Body

Based on the dependence of Kw on temperature, reason that neutrality requires that [H+] = [OH-] as opposed to requiring that pH = 7, and also consider the applications to biological systems.

Duration: 1 hr Scoring: 0 points

## Quiz: Acids and the Body

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

### Practice: Acid-Base Equilibria

Generate or use a particulate representation of an acid (strong, weak, or polyprotic) and a strong base to explain the species that will have large versus small concentrations at equilibrium.

Duration: 1 hr Scoring: 25 points

#### Lab: Acid-Base Titration

Interpret data from an experiment that uses titration to determine the concentration of an analyte in a solution.

Duration: 2 hrs 45 mins Scoring: 50 points

### Discuss: Acid-Base Titration

Analyze and evaluate scientific evidence, and communicate and apply the findings.

Duration: 1 hr Scoring: 15 points

## **LESSON 2: BUFFERS**

## Read: Buffers

Read about the components and resulting properties of buffer solutions.

Duration: 3 hrs 30 mins Scoring: 0 points

## **Quiz: Buffers**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 25 mins Scoring: 30 points

## **Study: Acids and Bases**

Relate the predominant form of a chemical species involving a labile proton (i.e. the protonated/deprotonated form of a weak acid) to the pH of a solution and the pKa associated with the labile proton.

Duration: 1 hr Scoring: 0 points

### **Ouiz: Acids and Bases**

Take a quiz to assess your understanding of the material.

Duration: 0 hrs 20 mins Scoring: 20 points

# Study: The Nature of Acids and Bases

Identify a solution as being a buffer solution, and explain the buffer mechanism in terms of the reactions that would occur upon addition of acid or base.

Duration: 1 hr Scoring: 0 points

# Quiz: The Nature of Acids and Bases

Take a quiz to assess your understanding of the material.

#### **Practice: Buffers**

Identify a solution as being a buffer solution, and explain the buffer mechanism in terms of the reactions that would occur upon addition of acid or base.

Duration: 1 hr Scoring: 25 points

### Lab: Buffers

Design a buffer solution with a target pH and buffer capacity by selecting an appropriate conjugate acid-base pair and estimating the concentrations needed to achieve the desired capacity.

Duration: 2 hrs 45 mins Scoring: 50 points

## Explore: The Importance of Buffers in the Body

Analyze, evaluate, and critique scientific explanations by examining scientific evidence.

Duration: 1 hr 30 mins Scoring: 25 points

## **LESSON 3: ACID-BASE EQUILIBRIA WRAP-UP**

# Test (CS): Acid-Base Equilibria Wrap-Up

Take a computer-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

### Test (TS): Acid-Base Equilibria Wrap-Up

Take a teacher-scored test to assess what you have learned in this unit.

Duration: 1 hr Scoring: 50 points

## **UNIT 10: SEMESTER 2 EXAM**

## **LESSON 1: SEMESTER 2 EXAM**

### Exam: Semester 2 Exam

Take a computer-scored exam to demonstrate your mastery of concepts and skills covered this semester.

Duration: 1 hr Scoring: 100 points

## Final Exam: Semester 2 Exam

Take a teacher-scored exam to demonstrate your mastery of concepts and skills covered this semester.

Duration: 1 hr Scoring: 100 points